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 ABSTRACT 
Technology has seen the development of processor industry right from micro to the latest Nano-

technology with speed being important criteria. Not much attention has been given to the power required to 
drive these Integrated Circuits. With gaining popularity in mobile computing, developing mobile 
processors have gained popularity since these processors possess unique properties like low power 
consumption and dissipation.  This paper aims at designing a low power Very Long Instruction Word 
(VLIW) processor with built in FFT processor, which uses single clock frequency. This VLIW processor is 
designed with two modules one for VLIW processor and the other one is  Hybrid dynamic voltage scaling 
module. Using the DVS algorithm the power can be reduced up to 20 to 25 % of normal VLIW processor.  
The design is simulated and synthesized using Xilinx project Navigator and the report is given in the paper. 
Keyword: VLIW processor, VHDL, interDVS, intraDVS, Hybrid DVS etc., 
 
1 INTRODUCTION VLIW PROCESSOR  

 
Recent high performance processors have depended on Instruction Level Parallelism (ILP) to achieve 

high execution speed. ILP processors achieve their high performance by causing multiple operations to 
execute in parallel using a combination of compiler and hardware techniques [11]. Very Long Instruction 
Word (VLIW) is one particular style of processor design that tries to achieve high levels of instruction level 
parallelism by executing long instruction words composed of multiple operations. The long instruction 
word called a MultiOp (multi operation) consists  of multiple arithmetic, logic and control operations each 
of which would probably be an individual operation on a simple RISC processor. The VLIW processor 
concurrently executes the set of operations within a MultiOp thereby achieving instruction level 
parallelism. It is different from super scalar processor in the fact that instruction scheduling is done by the 
complier as compared to super scalar processor where instruction scheduling is done dynamically by the 
hardware. 

VLIW architectures which issue one long instruction per cycle, where each long instruction called 
a MultiOp consists of many tightly coupled independent operations each of which execute in a small and 
statically predictable number of cycles. In such a system the task of grouping independent operations into a 
MultiOp is done by a compiler or binary translator. The processor freed from the cumbersome task of 
dependence analysis has to merely execute in parallel the operations contained within a MultiOp. This 
leads to simpler and faster processor implementations.  
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Figure 1 Format of MultiOP 



 
  One reason programming VLIWs is more difficult than writing code for a super scalar processor 
is that the program for a super scalar processor is inherently sequential and it is left to the hardware to 
extract parallelism from the sequential program. On the other hand, when generating code for a VLIW 
processor [15,16] the assembly language programmer or the compiler is faced with the task of extracting 
parallelism from a sequential algorithm and scheduling independent operations concurrently. For this 
reason, instruction-scheduling algorithms are critical to the performance of a VLIW processor. So for using 
a VLIW processor [11] the programmers must have knowledge about the various register sets available. 
This will help in extracting high level of parallelism from the processor.   
 

Compilers for the VLIW processors use a 3-phase method to generate code. The phases are: 

• Generate a sequential program. Analyze each basic block in the sequential program for 
independent operations. 

• Schedule independent operations within the same block in parallel if sufficient hardware resources 
are available. 

• Move operations between blocks when possible. 
Usage of VLIW processor has a few constraints: 

• There must be high degree of ILP in the program. Functional units must be duplicated which 
posses hardware design difficulties. 

• Efficient compiler is required which can predict the path of branch instructions more accurately. 
 
VLIW processor requires duplication of hardware. In the figure 2 shown below there are 2 fixed point 
ALU, 1 fixed point multiplication/division unit, 1 floating point addition/subtraction unit, 1 floating point 
multiplication/division unit, 1 load unit, 1store unit, 1 branch unit and FFT unit. This hardware duplication 
facilitates execution of several instructions simultaneously. 

 
 

Figure 2 Functional Unit Duplication in VLIW Processor 
 

Power consumption has become an overriding constraint for microprocessor designs, not only in 
mobile environments, but in desktop and server applications as well.  Traditionally, the priority has been on 
performance, and consequently, the supply voltage has been set at the maximum allowable level based on 
device breakdown potentials to enable fast operation.  However applications may not require the maximum 
achievable performance.  A number of methods have been proposed that take advantage of these substantial 
periods of low utilization by scaling the supply voltage and clock frequency, resulting in a reduction in 
dynamic power consumption. 
 



The basic goal of Hybrid DVS is to quickly adjust the processor’s operating voltage or frequency 
at run time to the minimum level of performance required by the application.  By continually adapting to 
the varying performance demands of the application energy efficiency is maximized.  The variable voltage 
generation is done by DC-DC converter.  This paper presents a VLIW processor with built in Hybrid DVS 
algorithm is shown in figure 3. This processor is designed to run in synchronous mode and to reduce the 
power consumption the interDVS and intraDVS [4] algorithms are add on to this processor. 

 
Figure 3 Block diagram of VLIW processor with Hybrid DVS 

 
The VLIW processor has the ability to alter its execution voltage while in operation by using 

Dynamic Voltage scaling.  This ability allows the processor to operate at the optimal energy/efficiency 
point and realize significant energy savings, which can be as much as 80% for some applications [1],[3]. 

Eop ∝ V2  and fmax   ∝ (V-Vt)/V  ……………………………..(1) 
Where Eop is the energy per operation fmax is the maximum clock frequency, and V is the operating voltage.  
To minimize the energy consumed by a given task; V can be reduced affecting a reduction in Eop.  A 
reduction in V, as shown in the equation, results in a corresponding decrease in fmax.  The implementation 
of Hybrid DVS [5, 6] and requires the application of scheduling algorithms.  The effectively control DVS, 
a dynamic scheduler is used to dynamically adjust the processor speed and voltage at run time.  Voltage 
scheduling significantly complicates the scheduling task since it allows optimization of the processor clock 
rate.  Voltage schedulers analyze the current and past state of the system in order to predict the future 
workload of the processor.  
 

2 NEED FOR THIS ARCHITECTURE 

There are many VLIW processors are available, but these are not built with FFT application.  The 
paper deals with VLIW processor with built in FFT processor.  By using this architecture the processor can 
support a little amount of DSP application.  This processor is capable of support ing different voltage levels . 
The voltage and the frequency of this processor are controlled by Hybrid DVS algorithm.  By using this 
approach the power reduction can be achieved at about 20 to 25 % according to the workload of the 
processor.  

3 ARCHITECTURE OF VLIW PROCESSOR 

The VLIW processor designed is a 16-bit processor with Harvard architecture. It has separate code 
memory and data memory. So, the processor has access to code and data at the same time. This enables 
execution speedup. The code memory address bus is 16 bit and its data bus is 128 bit. The data memory 
address bus is 8 bit and its data bus is 16 bit. 

It is capable of executing 6 instructions per cycle. It has a prefetch queue of size 6. The processor 
can execute the following operation at the same time.  

• One floating point addition/subtraction 
• One floating point multiplication/division 
• Two fixed point ALU operation 
• One fixed point multiplication/division 
• One load/store operation. 
• 64 point FFT operation 
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Figure 4 Block diagram of VLIW processor 

The processor has separate register sets for fixed-point operation and floating-point operation. Each register 
set has 64 registers. The fixed-point registers are 16 bit in length and floating-point registers are 32 bit in 
length. The individual registers are addresses with a six bit address. The basic block diagram of the VLIW 
processor is shown below 

 
3.1 FIXED POINT ARITHMETIC AND LOGIC UNIT 
 

The fixed point ALU consists of two components Arithmetic unit and Logic unit. The ALU is 
capable of handling 16 bits of data simultaneously, it has two 16-bit inputs A and B and has input carry bit 
Cin .The outputs are 16-bit G and carry output bit Cout. The 16 bit parallel adder is constructed using Carry 
Look Ahead logic to facilitate rapid addition of bits as compared to conventional Ripple Carry Adder. The 
B input logic is a digital circuit that enables use of just 2 select lines S1, S0 and minimal circuit components 
to differentiate between various arithmetic operations. The carry input and output bit are ‘don’t care’ bits 
for logical operations.  The logic unit is also capable of handling16 bit and it performs four basic logical 
operations AND, OR, NOT and XOR and gives the appropriate outputs based on the two select lines S1, S0. 
Using the mode select line S2 differentiates these two components  and the basic operations done are listed 
below 

• Arithmetic Operations 
o Addition  
o Subtraction  
o Increment 
o Decrement 

• Logical Operations 
o AND 
o OR 
o NOT 
o XOR 

The basic block diagram for the ALU is shown for one bit operation and the arithmetic unit and 
logic unit are differentiated using the Mode select line S2. 
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Figure 5 One Bit Operation of ALU 
 

It takes into account one bit of inputs Ai, Bi and carry Ci and performs the corresponding 
arithmetic and logic operation based on the operation select lines S1, S0. The output Gi is selected from 
either arithmetic unit or logical unit output using a 2 to 1 Mux with S2 as select line. 

 
 

Operation Select 

S2 S1 S0 Cin 
Operation Function 

0 0 0 0 G = A Transfer A 

0 0 0 1 G = A + 1 Increment A 

0 0 1 0 G = A + B Addition 

0 0 1 1 G = A + B + 1 Add with Carry input of 1 

0 1 0 0 G = A + B’ A plus 1’s complement of B 

0 1 0 1 G = A + B’ + 1 Subtraction 

0 1 1 0 G = A – 1 Decrement A 

0 1 1 1 G = A Transfer A 

1 0 0 x G = A Λ B AND 

1 0 1 x G = A v B OR 

1 1 0 x G = A ⊕ B XOR 

1 1 1 x G = A’ NOT ( 1’s Complement) 

Table 1 Truth Table of ALU 
 

 

 

 

 

 

 

 

Figure 6 Block diagram to show addition/subtraction operation 
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Figure 7 Block diagram for logical operation 
 
 
 
3.2  FIXED POINT MULTIPLICATION/DIVISION UNIT 
 
3.2.1 MULTIPLICATION UNIT 
 

The multiplication unit performs both unsigned and signed multiplication. The select line S0 is 
used to choose between unsigned and signed multiplication outputs. It takes two 8 bit inputs A and B and 
the output P is 16 bit. Both the multiplication is done using Extended Booth Algorithm. Extended Booth’s 
Algorithm is preferred because of its rapid computation efficiency. Modified Booth’s Algorithm needs just 
‘n/2’ steps to arrive at the product of two n bit numbers compared to n steps in the case of Booth’s 
Algorithm. It is twice as fast as Booth algorithm.  

 
 

 

  
 
  
 
 

 
 
 
 
 
 
 
 
 
 

Figure 8 Multiplier Unit 
 
3.2.2 DIVISION UNIT 
 

The division unit performs both unsigned and signed division. The select line S0 is used to choose 
between unsigned and signed division outputs. It takes 16 bit dividend (A) and 8 bit divisor (B) and the 
outputs are quotient (Q) 16 bits and remainder (R) 8 bit. Both the division is done using Non-Restoring 
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algorithm.  Non-Restoring Algorithm needs just ‘n’ additions or subtractions compared to ‘3 n/2’ additions 
or subtractions in the case of Restoring Algorithm.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Division Unit 
 
3.3 FLOATING POINT UNIT 
 
3.3.1 IEEE 754 STANDARD 

IEEE 754 Standard for floating point representation comprises a 23-bit mantissa M, an 8-bit exponent field 
E and a sign bit S. Floating point representation is redundant because the same number can be represented 
in more than one way. So, we have to represent in a unique or normal form. This process is called 
Normalization. The mantissa is said to be normalized if the digit to the right of the radix point is not zero, 
that is, no leading zeros appear in the magnitude part of the number. Hence the magnitude part of the 
normalized mantissa is always ‘1’. So there is no need to actually store the bit and it can be added later in 
the arithmetic circuits that process these numbers.  

The same representation must be used for zero both in fixed and floating point formats, which facilitates 
the implementation of the instructions that test for zero. So, the  floating point exponents should be encoded 
in excess-K code similar to excess-3 code, where the exponent field E contains an integer that is the desired 
exponent value plus K. The quantity K is called the bias and an exponent encoded in this way is called 
biased exponent. In IEEE 754 Standard bias K is taken as 127.  The number N represented by a 32-bit 
IEEE Standard floating point number has the following set of interpretations: 

1. If 0 < E < 255, then N= (-1)S * 2E-127 * (1.M) 
2. If E = 0 and M != 0,  then N =(-1)S * 2E-126 * (0.M) 
3. If E = 0 and M = 0, then N = (-1)S*0 
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Figure 10 IEEE 754 Format 
 
3.3.2 FLOATING POINT ADDITION AND SUBTRACTION 

 
For the addition and subtraction of two floating point numbers, their exponents must be made 

equal before the corresponding mantissa can be added or subtracted. This exponent equalization is done by 
right shifting the mantissa XM associated with the smaller exponent XE a total of YE-XE digits to form the 
new mantissa XM *2(X

E 
- Y

E )which can be combined directly with YM.  
 

Floating point addition and subtraction has four steps: 
 

1. Compute YE-XE, a fixed point of subtraction. 
2. Shift XM by YE-XE laces to the right to form XM*2 (X

E
-Y

E). 
3. Compute XM *2 XE-YE ±YM, a fixed point addition or subtraction. 
4. Normalize the result  

 
3.3.3 FLOATING POINT MULTIPLICATION AND DIVISION 
 

Floating point multiplication involves a fixed-point multiplication of the mantissas and a fixed-
point addition of their exponents. The multiplication is done using Modified Booth’s Algorithm.  

 
X * Y = (Xm * Ym) * 2Xe+Ye 
 

Floating point division involves a fixed-point division of the mantissas and a fixed-point subtraction of 
their exponents. The division is done using Non-Restoring Algorithm.  

 
X / Y = (Xm / Ym) * 2Xe-Ye 

3.4 FFT IMPLEMENTATION 
 
For recent wireless systems requiring 54Mbps data rate and throughput increase will need parallel 

architecture. It means more than one PE needs to be assigned per column to the FFT. Parallel-pipelined 
FFTs are suitable for both high throughput and high power efficiency. In parallel-pipelined architectures, 
only hardware cost for PEs will be increased, the actual size of the FIFOs between stages usually remains 
constant for a given FFT sized N. With the increase of the FFT size, the area of FFT processor will be 
dominated by the FIFOs. Hence, parallel pipelined FFTs have not significant area overhead, compared to 
pipelined FFT [8] [9]. For a given throughput, parallel-pipelined FFTs can operate at lower frequency than 
pipelined FFTs, therefore resulting in lower power consumption. Not many researchers have explored the 
scope of parallel-pipelined FFTs. 
 

For 64-point pipelined FFT, we employ four radix-4 PEs in each stage. The block diagram of the 
architecture is depicted in Figure 11 termed as 4-parallel-pipelined FFT. The architecture can achieve four 
times throughput, compared to the pipelined FFT. The input data are separated into four streams. There are 
four commutators in stage1 and stage2, respectively. Each of them has 1/4 size of the commutators in 
pipelined FFTs and implements the transform from sequential data to parallel data. The coefficients in each 
stage are divided into four sections, responding to four input streams. Only 3 complex multipliers are used 
in stage2, because the output of butterfly1 in stage2 is multiplied by stage 2’s coefficient1, which only 
contains (7fff,0000). In this architecture, the number of PEs per column is same as the radix, hence, no 
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shuffle units is needed in stage3. The multipliers’ outputs in stage2 are fed into each of 4 simplified 
butterfly elements as shown in Figure 11. 
          The simulated a multiplier-less architecture to replace the conventional complex multiplier in 
pipelined FFTs [10]. Both area and power consumption for the multiplier unit are reduced. This paper 
explores a parallel-pipelined architecture with 4 radix-4 PEs in a column for 64-point FFT and a parallel-
pipelined architecture with 2 radix-4 PEs in a column for 16-point FFT. The complex multiplication in 
parallel-pipelined FFTs is replaced by the minimum number of shift and addition operations based on 
common sub expression sharing across coefficients. 

 
Figure 11 Block diagram of Pipeline FFT 

 
4 HYBRID DVS ALGORITHM 

 The efficient algorithms for interDVS and intraDVS are taken and they are implemented 
in hardware description language [12].  Depending upon the task and slack time a particular algorithm is 
selected and it will adjust either processor voltage or clock.  The block diagram is shown below and the 
selection of the algorithm is done as per the table 

 
 
 
 
 
 
 
 
 
 
 

Figure 12 Block diagram of Hybrid DVS 
 
 

Heiristic Description 

S0 Uses only intra mode since only one task is available 

S1 Uses the intra mode when the unused slack time is more than a 
predefined amount of slack time 

S2 Uses inter mode since the number of task is more than 1 

Table 2 Selection of DVS algorithm 

Voltage 
level 

Task Set 

Chip select  

Processor clk  

8 bits Voltage 
Selection Control 

block 
Inter and Intra 

DVS DC –DC 
Converter 

FPGA 



5 INSTRUCTIONS - PREFETCH MODULE 
 
The memory-prefetch module fetches the 128 bit VLIW instructions from the memory and places it in the 
prefetch queue of size 6. This enables increasing the speed of the processor through pipelining 
(simultaneous execution and fetching of subsequent instructions). The module passes the VLIW from the 
queue to the decoder module.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 Memory - Prefetch Module 
 
5.1 DECODER MODULE 
 
The decoder module decodes the VLIW passed by the memory pre fetch module and generates the control 
signals and register addresses for all the seven instructions forming the VLIW.  
 
 
 
 
 
 
 
 
 

Figure 14 Decoder Module 
 
5.2 FUNCTIONAL UNIT-REGISTER MODULE 
 
The module uses the controls signals  and register addresses from decoder module. It accesses the registers 
for data and passes them to functional units to compute the result. The result is then stored back into the 
register.  

The functional unit-register module consists of  
• Functional units 

o One floating point addition/subtraction unit  
o One floating point multiplication/division unit  
o Two fixed point ALU  
o One fixed point multiplication/division unit  
o One load/store unit  
o 64 point FFT 

• Register set 
o Fixed-point register set 
o Floating-point register set. 
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Figure 15 Functional Unit – Register Module 
 
 
6 SIMULATION RESULT 
 
The VLIW processor functional blocks are written in Hardware description language and this code is 
simulated and then synthesized using Xilinx project navigator.  The results are shown below and the device 
utilization of the FPGA is given below 
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Figure 16 Simulation result of VLIW processor 

 

Figure 17 Hybrid DVS simulation result 



 

Figure 18 Synthesis report showing the various blocks in VLIW processor 

 

Figure 19 Synthesis report of VLIW processor 

Device Utilization for 2VP125ff1696 
***************************************************** 
Resource                 Used     Avail     Utilization 
-------------------------------------------------------------------------------- 
IOs   275 1200  22.92% 
Function Generators 24287 111232  21.83% 
CLB Slices   12144 55616  21.84% 
Dffs or Latches  5965 114832  5.19% 
Block RAMs  0 556  0.00% 
Block Multipliers  0 556  0.00% 
-------------------------------------------------------------------------------- 

Table 3 Device utilization for VLIW processor 



Device    Utilization     for     2V1000bg575 
***************************************************** 
Resource                 Used     Avail     Utilization 
-------------------------------------------------------------------------------- 
IOs   22  328  6.71% 
Function Generators 4840 10240  47.27% 
CLB Slices                         2420 5120  47.27% 
Dffs or Latches  1185 11224  10.56% 
-------------------------------------------------------------------------------- 
Table 4 Device utilization for Hybrid DVS 

Conclusion 
 

This paper described the implementation of a low power dynamic voltage scaling (DVS) VLIW 
processor.  Dynamic voltage scaling allows our processor to operate at maximal effic iency without limiting 
peak performance.  The future work will be implementing this architecture in ASIC to further increase the 
operating frequency and further reduction in power.  This design can be implemented as asynchronous 
VLIW processor for getting better power consumption.  
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